Termination w.r.t. Q of the following Term Rewriting System could not be shown:

Q restricted rewrite system:
The TRS R consists of the following rules:

f1g1
f1g2
f2g1
f2g2
g1h1
g1h2
g2h1
g2h2
e1(h1, h2, x, y, z) → e2(x, x, y, z, z)
e2(f1, x, y, z, f2) → e3(x, y, x, y, y, z, y, z, x, y, z)
e3(x1, x1, x2, x2, x3, x3, x4, x4, x, y, z) → e4(x1, x1, x2, x2, x3, x3, x4, x4, x, y, z)
e4(g1, x1, g2, x1, g1, x1, g2, x1, x, y, z) → e1(x1, x1, x, y, z)

Q is empty.


QTRS
  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

f1g1
f1g2
f2g1
f2g2
g1h1
g1h2
g2h1
g2h2
e1(h1, h2, x, y, z) → e2(x, x, y, z, z)
e2(f1, x, y, z, f2) → e3(x, y, x, y, y, z, y, z, x, y, z)
e3(x1, x1, x2, x2, x3, x3, x4, x4, x, y, z) → e4(x1, x1, x2, x2, x3, x3, x4, x4, x, y, z)
e4(g1, x1, g2, x1, g1, x1, g2, x1, x, y, z) → e1(x1, x1, x, y, z)

Q is empty.

Using Dependency Pairs [1,13] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

E1(h1, h2, x, y, z) → E2(x, x, y, z, z)
F1G2
F2G2
F2G1
E3(x1, x1, x2, x2, x3, x3, x4, x4, x, y, z) → E4(x1, x1, x2, x2, x3, x3, x4, x4, x, y, z)
F1G1
E4(g1, x1, g2, x1, g1, x1, g2, x1, x, y, z) → E1(x1, x1, x, y, z)
E2(f1, x, y, z, f2) → E3(x, y, x, y, y, z, y, z, x, y, z)

The TRS R consists of the following rules:

f1g1
f1g2
f2g1
f2g2
g1h1
g1h2
g2h1
g2h2
e1(h1, h2, x, y, z) → e2(x, x, y, z, z)
e2(f1, x, y, z, f2) → e3(x, y, x, y, y, z, y, z, x, y, z)
e3(x1, x1, x2, x2, x3, x3, x4, x4, x, y, z) → e4(x1, x1, x2, x2, x3, x3, x4, x4, x, y, z)
e4(g1, x1, g2, x1, g1, x1, g2, x1, x, y, z) → e1(x1, x1, x, y, z)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ EdgeDeletionProof

Q DP problem:
The TRS P consists of the following rules:

E1(h1, h2, x, y, z) → E2(x, x, y, z, z)
F1G2
F2G2
F2G1
E3(x1, x1, x2, x2, x3, x3, x4, x4, x, y, z) → E4(x1, x1, x2, x2, x3, x3, x4, x4, x, y, z)
F1G1
E4(g1, x1, g2, x1, g1, x1, g2, x1, x, y, z) → E1(x1, x1, x, y, z)
E2(f1, x, y, z, f2) → E3(x, y, x, y, y, z, y, z, x, y, z)

The TRS R consists of the following rules:

f1g1
f1g2
f2g1
f2g2
g1h1
g1h2
g2h1
g2h2
e1(h1, h2, x, y, z) → e2(x, x, y, z, z)
e2(f1, x, y, z, f2) → e3(x, y, x, y, y, z, y, z, x, y, z)
e3(x1, x1, x2, x2, x3, x3, x4, x4, x, y, z) → e4(x1, x1, x2, x2, x3, x3, x4, x4, x, y, z)
e4(g1, x1, g2, x1, g1, x1, g2, x1, x, y, z) → e1(x1, x1, x, y, z)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We deleted some edges using various graph approximations

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
QDP
          ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

F1G2
E1(h1, h2, x, y, z) → E2(x, x, y, z, z)
F2G1
F2G2
E3(x1, x1, x2, x2, x3, x3, x4, x4, x, y, z) → E4(x1, x1, x2, x2, x3, x3, x4, x4, x, y, z)
F1G1
E4(g1, x1, g2, x1, g1, x1, g2, x1, x, y, z) → E1(x1, x1, x, y, z)
E2(f1, x, y, z, f2) → E3(x, y, x, y, y, z, y, z, x, y, z)

The TRS R consists of the following rules:

f1g1
f1g2
f2g1
f2g2
g1h1
g1h2
g2h1
g2h2
e1(h1, h2, x, y, z) → e2(x, x, y, z, z)
e2(f1, x, y, z, f2) → e3(x, y, x, y, y, z, y, z, x, y, z)
e3(x1, x1, x2, x2, x3, x3, x4, x4, x, y, z) → e4(x1, x1, x2, x2, x3, x3, x4, x4, x, y, z)
e4(g1, x1, g2, x1, g1, x1, g2, x1, x, y, z) → e1(x1, x1, x, y, z)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [13,14,18] contains 1 SCC with 4 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
QDP

Q DP problem:
The TRS P consists of the following rules:

E1(h1, h2, x, y, z) → E2(x, x, y, z, z)
E3(x1, x1, x2, x2, x3, x3, x4, x4, x, y, z) → E4(x1, x1, x2, x2, x3, x3, x4, x4, x, y, z)
E4(g1, x1, g2, x1, g1, x1, g2, x1, x, y, z) → E1(x1, x1, x, y, z)
E2(f1, x, y, z, f2) → E3(x, y, x, y, y, z, y, z, x, y, z)

The TRS R consists of the following rules:

f1g1
f1g2
f2g1
f2g2
g1h1
g1h2
g2h1
g2h2
e1(h1, h2, x, y, z) → e2(x, x, y, z, z)
e2(f1, x, y, z, f2) → e3(x, y, x, y, y, z, y, z, x, y, z)
e3(x1, x1, x2, x2, x3, x3, x4, x4, x, y, z) → e4(x1, x1, x2, x2, x3, x3, x4, x4, x, y, z)
e4(g1, x1, g2, x1, g1, x1, g2, x1, x, y, z) → e1(x1, x1, x, y, z)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.